Ytterbium Metal-Promoted Reaction of Ketimines with Carbon Dioxide

Ken TAKAKI, * Shinji TANAKA, and Yuzo FUJIWARA*

Department of Applied Chemistry, Faculty of Engineering,
Hiroshima University, Kagamiyama, Higashi-Hiroshima 724

Ketimines are reduced by ytterbium metal and reacted with carbon dioxide to give Yb salts of $\alpha\text{-amino}$ acids in good yields.

We have previously demonstrated that diaryl ketones were umpoled by ytterbium metal and reacted with various electrophiles such as ketones, esters, and epoxides. $^{1)}$ On the treatment of imines with Yb metal, aldimines were changed to 1,2-diaminoethane derivatives, but in contrast ketimines were reduced to the corresponding amines. $^{2)}$ The latter result suggests a possiblity of umpolung of ketimines. We report herein a new and facile method for the synthesis of α -amino acids from ketimines and carbon dioxide.

Treatment of N-diphenylmethyleneaniline (1a) with Yb metal followed by ${\rm CO}_2$ bubbling in THF-HMPA gave Yb salt of glycine derivative 2a in 92% yield. The salt 2a contains two equivalents of HMPA and water, which were difficult to be removed. IR spectrum of 2a exhibits a characteristic absorption of P=O at 1141 cm⁻¹ in addition to those of α -amino acid. 3 H-NMR was not able to measure because of trivalent Yb metal. The phenyl, ${\rm C}_2$, and HMPA carbons were observed in $^{13}{\rm C}$ -NMR spectra, but the carbonyl carbon was obscured. The salt 2a was converted to the corresponding free amino acid 3 in 93% yield by the treatment with hydrochloric acid. 5

The result using other ketimines are summarized in Table 1. In all cases, HMPA and water were incorporated into the Yb salts, 6) which is attributed to the high coordination numbers of the metal. Of the ketimines, diphenylmethyleneamine (1, $R^1=R^2=Ph$, $R^3=H$) did not react with

$$\begin{array}{c|c}
R^{1} \\
C = NR^{3} & \frac{1) \text{ Yb / THF-HMPA}}{2) \text{ CO}_{2}} & \begin{bmatrix} R^{1}R^{2}CCO_{2} \\ NHR^{3} \end{bmatrix}_{3} \text{ Yb · 2HMPA · 2H}_{2}O
\end{array}$$

 ${\rm CO}_2$ though reduction took place quantitatively. The carboxylation of the ketimines proceeded probably via metallaazirizine intermediates. 7)

A typical example is as follows; ketimine 1a (257 mg,1 mmol) in THF (2 ml) was added to a slurry of activated Yb metal (173 mg,1 mmol) in THF-HMPA (2:1,3 ml) and stirred for 2 h at room temperature. Then ${\rm CO_2}$ was passed through the resulting reddish black solution for 1 h. The reaction was quenched with water and the mixture was extracted with ether, dried, and concentrated in vacuo to give the salt 2a (453 mg,92%).

Ketimine	R ¹	R ²	R ³	Product	Yield/% ^{a)}
1a	Ph	Ph	Ph	2a	92
1 b	Ph	Ph	С ₆ Н ₄ С1-р	2b	72
1c	Ph	Ph	С ₆ Н ₄ ОМе-р	2c	88
1 d	Ph	Ph	C_6H_4 Me-p	2d	83
1e	Ph	С ₆ Н ₄ С1-р	Ph	2e	74
1 f	Ph	C_6H_4 Me-p	Ph	2f	62
1 g	C_6H_4Me-p	C_6H_4 Me-p	Ph	2g	66
1 h	C_6H_4 Me-p	C_6H_4 Me-p	C_6H_4 Me-p	2h	84

Table 1. Synthesis of Yb salts of α -amino acids from ketimines 1 and CO_2

References

- 1) Z.Hou, K.Takamine, Y.Fujiwara, and H.Taniguchi, Chem.Lett., 1987, 2061; Z.Hou, K.Takamine, O.Aoki, H.Shiraishi, Y.Fujiwara, and H.Taniguchi, J. Chem.Soc., Chem.Commun., 1988, 668; J.Org.Chem., 53, 6077 (1988).
- 2) K.Takaki, Y.Tsubaki, S.Tanaka, F.Beppu, and Y.Fujiwara, Chem.Lett., 1990 203; K.Takaki and Y.Fujiwara, Appl.Organomet.Chem., 4, 297 (1990).
- 3) 2a: mp 136.5-137 °C; IR (Nujol) 3372, 3339, 1639, 1141 cm⁻¹; 13 C-NMR (CDCl₃) δ 40.0 (HMPA), 58.0 (tert-C), 112.5, 114.8, 126.0, 126.4, 127.1, 136.9, 142.4. Anal. Found: C,58.81; H,5.81; N,8.53%. Calcd for $C_{72}H_{88}N_{9}O_{10}P_{2}$ Yb: C,58.64; H,6.01; N,8.54%.
- 4) **3a**: mp 164-166.5 °C; IR (Nujol) 3055, 1627 cm⁻¹; 1 H-NMR (DMSO-d6) 6 6.42-7.63 (m); 13 C-NMR (DMSO-d6) 6 70.4 (tert-C), 115.2, 116.8, 127.0, 127.8, 141.3, 146.1, 173.6 (C=O). Anal. Found: C,79.07; H,5.69; N, 4.59%. Calcd for 2 C₂O^H₁₇NO₂: C,79.18; H,5.64; N, 4.61%.
- 5) Similarly, 2g was converted to 3g in 83% yield.
- 6) The salts 2b-2h gave similar spectral data to 2a and satisfactory elemental analyses.
- 7) E.J.Roskamp and S.F.Pedersen, J.Am.Chem.Soc., 109, 6551 (1987).

 (Received December 26, 1990)

a) Isolated yield.